RECENT DEVELOPMENTS IN THE NIST AC-DC DIFFERENCE CALIBRATION SERVICE FOR THERMAL TRANSFER STANDARDS

Thomas E. Lipe
Electricity Division
National Institute of Standards and
Technology
Gaithersburg, MD 20899-8111

Outline

- Brief introduction to thermal transfer standards
 - What they are
- ▶ The NIST Ac-dc Difference calibration service
 - > Parameter space
 - > Uncertainties
- ▶ Research activities
 - > Cryogenic thermal transfer standard
 - > Film multijunction thermal converters
- NIST ▷ BIVD high voltage system

Introduction

▶ Customers:

- Department of Defense Laboratories
- > Commercial Laboratories
- ▶ 50 to 75 Instruments per year (\$125k)
- ► Active research programs
 - > CTTS to develop new primary standard

 - BIVD system to improve high-voltage measurements

Introduction

- ► Thermal converters form the primary standards for calibration of

 - > Ac current
 - > Power
- **▶** Electrothermal instruments
 - > RMS responding (direct measurement of power)
 - ▷ Simple structures readily modeled
 - > No mechanical effects to account for

Introduction

▶ Basic thermoelement

- Major error sources are thermoelectric effects and low-frequency tracking of the input signal

▶ Voltage Measurements

- > Major error sources are reactance and dielectric loss

Current Measurements

- > Often use current shunts with thermoelements
- > Major error sources are current definition effects

Ac-dc Standards

Robustness!

► MJTC Primary Standards

- □ Group of 10 MJTCs
- Different construction
- > Different manufacturers
- Different eras
- > Used for both voltage and current
- \triangleright Intercompare to < 0.4 μ V/V
- Primary standard uncertainty: 0.5 μV/V

NST

Temperature Gradients

Ac-dc Standards

- **▶** Voltage Converters
 - > Reference standards
 - Coaxial thermal converters
 - Special converters for frequency extensions
 - > Working standards
 - Coaxial thermal converters

- Current Converters
 - > Reference standards
 - ► High-current thermoelements
 - Working Standards
 - ► High current thermoelements
 - ► High current shunts

Voltage Build-up and Build-down

Parameter Space - Voltage*

Parameter Space - Current

Research Activities - Cryogenic Thermal Transfer Standard (CTTS)

- ► Goal: Develop new primary standard using cryogenic technology to
 - > Increase sensitivity
 - > Reduce thermoelectric errors
 - □ Use at extremely low power levels to measure mV and μA

Transition-Edge Sensor

Sensor Characteristics	TES
T _c (K)	6.179
transition width (10-90%, mK)	3.1
$(dR/dT)_{peak} (\Omega/K)$	8000
α =1/R*(dR/dT) _{peak} (K ⁻¹)	500
T/R*(dR/dT) peak	3090

Sensor Characteristic	thermocouple
T-T (C)	150-200
$(dV/dT)_{peak} (\mu V/K)$	100
$1/V^*(dV/dT)_{peak}(K^{-1})$	0.01
T/V*(dV/dT)	<1

National Institute of Standards and Technology

CTTS - Theory of Operation

$$P_{total} = P_{trim} + P_{sig}$$

 $P_{total} = G(T_c - T_{plat})$
 $\Delta P_{trim} = -\Delta P_{sig}$

CTTS - Experimental Platform

Cryostat Baseplate 4 K

> Reference Platform ≈ 6 K

Thermal
Converter
Stage
6 K + ΔT_c

CTTS - Present Status

- ► Voltage converter measurements indicate large ac-dc differences at all frequencies
- Level coefficient measurements indicate decreasing ac-dc differences with decreasing input level
- ► Thermoelectric errors are negligble
- ▶ Conclusions
 - High frequency errors caused by transmission line
 - Audio-frequency errors caused by magnetic field coupling from heater into sensor

CTTS - Future Plans

- ► Redesign sensor chip
 - > Bifilar heater arrangement
 - On-chip shielding

- Redesign experimental platform
 - > Integrate platform and transmission line platform
 - > Integrate sensor chip and transmission line
- ▶ Improve resistance measurements
- ► Improve PID control

Research Activities - Thin-Film Multijunction Thermal Converters (FMJTCs)

- ► Goal:Use semiconductor fabrication technology to
 - > Fabricate new reference and working standards
 - > Fabricate new thermal current converters

FMJTC - Design

NIST CENTENNIAL

FMJTC - Results

FMJTC - Future Plans

- ► Fabricate high-current thermal converters
 - > Current levels to 1 A on a single chip

 - > Monitor vacuum-sealed converters for leaks

Research Activities - Binary Inductive Voltage Divider System

- Construct measurement system based on a binary inductive voltage divider (BIVD) to
 - Check accuracy and reproducibility of voltage build-up process

BIVD - Schematic

BIVD - Results

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

- Results from build-up
- Results from BIVD

BIVD - Future Plans

- ► Increase voltage/frequency ranges to 1000 V at 20 kHz
- Check Build-up methodology to 1000 V
- ▶ Reduce Type A errors of BIVD system
- Use in CCEM-K9 (international intercomparison of high-voltage thermal converters)

